Generation of Emissions Data for Use in WRF-Chem

Steven Peckham

Default Chemical BCs

have_bcs_chem = .false.

- Uses idealized chemical profile generated from the NALROM simulation (see WRF-Chem User's Guide & code for more details)
 - North America summer
 - Limited number of chemical species
 - Originally developed for lower troposphere ozone forecast

Boundary Conditions

- What does WRF use for lateral boundary conditions?
- Does one need to have chemical boundary conditions?
 - How long until lateral boundary data impacts the center of your 1000 km simulation domain?
 - Advection if U~O[10m/s], L~36km/h;

mozbc – set chemical initial and lateral boundary conditions

 chemical initial and boundary conditions are needed to account for initial concentrations and inflow/background concentrations

mozbc

NCAR/ACD has developed a program to create time-varying chemical boundary conditions for WRF-Chem from MOZART-4 output. For questions about running mozbc please contact: Stacy Walters (stacy at ucar . edu), Mary Barth (barthm at ucar . edu), or Gabriele Pfister (pfister at ucar . edu). To obtain mozbc, see the **Download** section below.

mozbc – set chemical initial and lateral boundary conditions

- fills the chemical fields in wrfinput_d<domain> and wrfbdy_d<domain> with global model output (run <u>after</u> real.exe and <u>before</u> wrf.exe)
- set-up for MOZART-4 and CAM-Chem global model output
- controlled by namelist file (e.g. define species mapping; mappings available for MOZART to RACM, RADM, CBMZ, MADE/Sorgam, MOZAIC, GOCART)
- Interpolation in time and space
- global MOZART-4 output for past years and forecasts available on Web (http://web3.acd.ucar.edu/wrf-chem/mozart.shtml)

mozbc

NCAR/ACD has developed a program to create time-varying chemical boundary conditions for WRF-Chem from MOZART-4 output. For questions about running mozbc please contact: Stacy Walters (stacy at ucar . edu), Mary Barth (barthm at ucar . edu), or Gabriele Pfister (pfister at ucar . edu). To obtain mozbc, see the **Download** section below.

mozbc – set chemical initial and lateral boundary conditions

- mozbc operates on the most common map projections in WRF (Lambert, Mercator, Polar, Lat/Lon)
- To <u>compile</u>: make_mozbc -> will create the executable mozbc
- Package includes example namelist files ("mozbc.inp")
- To <u>run</u>: mozbc < mozbc.inp > mozbc.out
- to enable chemical IC and BC when running WRF-Chem set in namelist.input:
 have_bcs_chem = .true

mozbc

NCAR/ACD has developed a program to create time-varying chemical boundary conditions for WRF-Chem from MOZART-4 output. For questions about running mozbc please contact: Stacy Walters (stacy at ucar . edu), Mary Barth (barthm at ucar . edu), or Gabriele Pfister (pfister at ucar . edu). To obtain mozbc, see the **Download** section below.

Example namelist file for mozbc:

```
&control
do bc = .true.
                                                         defines if BC are set (default: .false.)
do ic = .true.
                                                         defines if IC are set (default: .false.)
domain = 2
                                                         number of domains to work on (default: 1);
                                                         e.g. d=2 sets BC for d01 and IC for d01 and d02
dir wrf = '/ptmp/me/WRF chem/'
                                             path to WRF-Chem files (met em*, wrfinp*, wrfbdy*)
dir moz = '/ptmp/me/MOZBC/'
                                             path to MOZART/CAM-Chem input files
fn moz = 'h0001.nc'
                                     initial MOZART/CAM-Chem file; mozbc increments filenames,
                                                                    filenames must be of the form
prefix<nnn>.nc
                                  suffix string for MOZART/CAM-Chem variables (default: 'VMR inst')
moz var suffix = 'VMR avrg'
met file prefix = 'met em'
                                  prefix string for the WRF meterological files (default: 'met em')
                                                                    {standard WRF names:
met em.d<nn>.<yyyy-mm-dd hh:mm:ss>.nc }
met file suffix = '.nc'
                                  suffix string for the WRF meterological files (default: 'nc')
                                  separator character for WRF meterological files (default: '.')
met file separator = '.'
spc map = 'o3 -> O3', 'o -> O', 'o1d cb4 -> O1D', 'n2o -> N2O', 'no -> NO',
           'DUST 4 -> .2348*[DUST3]+.5869*[DUST4];1.e9', 'DUST 5 -> .5869*[DUST4];1.e9'
```

ubc - <u>upper</u> chemical boundary conditions

 WRF-Chem does not have a stratosphere – possible issues when looking at UTLS, STE influence or comparing to satellite products (e.g.

trop. O_3 re

ubc - <u>upper</u> chemical boundary conditions

- o3,no,no2,hno3,ch4,co,n2o, n2o5 are set to climatology above certain pressure level and relaxed to tropopause level below (pressure level can be set by user)
- Same scheme as used in MOZART-4 and CAM-Chem
- Climatologies for present and future available on Website
- namelist.input (&chem):

```
have_bcs_upper = .true.
fixed_upper_bc = 50.
fixed_ubc_inname = "ubvals_b40.20th.track1_1996-2005.nc"
```


www.acd.ucar.edu/wrf-chem/

